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Abstract—Due to the serious shortage of training data, 

CNN's research on non-reference image quality assessment 

(NR-IQA) is very constrained. In this paper, the existing 

neural network research on NR-IQA is summarized, and the 

methods to solve the problem are divided into three types: 

image segmentation, pre-training migration and unsupervised 

sequence learning. Then from these three aspects, a more 

representative algorithm is selected to test and compare 

performance on different datasets, and analyze the advantages 

and problems of the three. In the end, the direction of NR-IQA 

development is discussed, which provides a comprehensive 

reference for researchers in this field. 
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I. INTRODUCTION 

Image quality assessment is a crucial part of the images 
transmission process. Existing methods can fall into three 
categories: full reference (FR-IQA), reduced reference 
(RR-IQA), and no reference (NR-IQA). FR-IQA means that 
all the information of the pristine undistorted image is known, 
studying from the difference between the distorted image 
and the pristine image, such as several classic algorithms: 
SSIM [1], GMSD [2], FSIM [3] and so on. RR-IQA means 
that only some of the features of the pristine image are 
known as a reference, and NR-IQA is evaluated without 
reference information at all. Because the pristine image is 
often difficult to obtain in practical applications, the 
researchers pay more attention to the non-reference image 
quality assessment. The existing NR-IQA algorithms can be 
roughly divided into two categories: methods based on 
natural statistical characteristics and methods based on 
learning training. 

The former study unfolds the statistical properties of 
distorted images and pristine undistorted images [4,5,6]. For 
example, BRISQUE [4] shows that the statistical property 
distribution of natural images approximates the generalized 
Gaussian distribution (GGD), which is warped by distortion. 
Therefore, the statistical characteristics on the GGD 
spectrum are used to distinguish the types of distortions and 
to evaluate the image distortion quality. According to the 
statistical data of structural features, BLIINDS-II [5] believes 
that the degree of distortion and the type of distortion change 
the DCT coefficients, so features are extracted in the DCT 
domain to predict the quality score. The latter study uses 
feature learning instead of hand-craft feature extraction. For 
example, CORNIA [7] proves the validity of using the 
pristine image directly as input, and uses k-means to encode 
local features and support vector machine to quality 
evaluation. 

The former research relies heavily on the distortion type 
and local feature calculation, making it very limited. The 
latter, due to CNN, has made the algorithm get rid of these 
limitations, and the performance has been greatly improved. 
However, the effectiveness of the CNN network is very 
dependent on the data. Existing image quality assessment 
data sets are not sufficient to support training network 
models with a large number of parameters. The LIVE 
datasets contains a total of 779 distortion images for 5 
distortion types; The TID2008 datasets has a total of 1700 
distortion images for 17 types of distortion; The TID2013 
datasets has a total of 3,000 distortion images for 24 
distortion types. As the type of distortion increases, the 
number of distorted images for each distortion type in the 
datasets does not increase. In order to solve this problem, 
CNN's research on NR-IQA can be roughly divided into 
three categories: image segmentation, pre-training migration 
and unsupervised sequence learning. 

II. IMAGE SEGMENTATION PROCESSING 

Image segmentation processing refers to the method of 
dividing the entire image into several image patches to 
expand the datasets. There are a variety of ways to crop, such 
as no overlapping cropping, overlapping cropping, or 
random cropping. Extending the datasets by segmenting the 
image is the most direct and effective way, but it also brings 
two problems. Firstly, in the datasets, only the quality of the 
entire image is included, and there is no quality score for the 
image patch after the segmentation. Therefore, how to obtain 
the validly quality score of image patch becomes a very 
important research branch. Secondly, if you take a small 
image patch as input, the resulting output is naturally the 
quality score of the image patch. It is also important to 
combine the scores of the cropped image patches into the 
quality scores of the entire image. By different acquisition 
methods, we will discuss two aspects.  

A. Directly Given 

The easiest way is to give the score of the image directly 
to the image patch, which is cropped from the image. The 
more classic is the work of Kang et al. [8], simple and 
straightforward and the results are good. He splits the entire 
image into 32*32 image patches without overlapping, and 
the scores of these image patches are directly equivalent to 
the scores of the image. The supervised training with the 
expanded datasets and the results obtained in a very simple 
six-layer network were very competitive at the time, which 
fully proved the advantages of CNN in NR-IQA. 

However, there will be noise when the label is directly 
applied, and the quality score of the image patches will be 
distorted, which will have a great impact on the accuracy of 
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the network training. Therefore, Lu Peng et al. [9] proposed 
an entropy-based method to analyze and verify the influence 
of image entropy on the distortion of the image, and use 
information entropy as the weight of the loss function to 
improve the accuracy. 

Even if you get a quality score directly given, 
considering the type of distortion in your network may 
increase its accuracy. After image patches quality score 
processing, Fan et al. [10] adopts a method of combining 
multiple types of distortions, inputting image patches into 
multiple networks, and obtaining multiple quality scores 
relative to each type of distortion.  

B. Combined FR-IQA 

The so-called combined FR-IQA usually refers to the 
method of obtaining a quality score of an image patch using 
a full reference method. After years of research by 
researchers, FR-IQA has been sufficiently accurate, so 
combining it is a very effective way. There are many existing 
effective FR-IQA algorithms. How to effectively select and 
combine them has a great impact on the performance of the 
network. Wen et al. [11] considered the methods of Mean 
Square Error (MSE) and SSIM respectively, and proposed a 
specific formula for calculating the quality score of image 
patches, which was used as a label for supervision training. 

Kim et al. [12] combined four classic FR algorithms: 
SSIM, GMSD, FSIM, VSI. Through these FR-IQA 
algorithms, he calculates a local quality map of the image 
with a quality score and uses it to train the network. The 
combination of FR-IQA algorithms is not as good as 
possible, and the combination with the network is the key. 
Bare et al. [13] directly adopted FSIM as a label, combined 
with partial residual knowledge, and added two layers of 
sum to construct a deep CNN model. Performance has 
indeed improved without pre-training. 

C. Pooling 

There are two problems after image segmentation, the 
label problem from the entire image to the image patch and 
the pooling problem from the image patch to the entire 
image. There are many solutions to the former, which we 
have explained in detail, and the latter also has a variety of 
treatments, such as average pooling, max-pooling, 
min-pooling, feature connections and so on. The different 
choices of pooling will also have a certain impact on the 
accuracy of the entire network. 

Perhaps just changing the pooling method, the 
performance also will be improved. The best way to 
discriminate is to make the pooling method as the only 
variable. For example, Bianco et al. [14] compared the 
different pooling methods of the same network. When the 
conditions of cropping images, network structure, and 
pre-training are the same, the results are compared for 
different pooling methods: feature fusion (average pooling of 
image patch features), feature connectivity, and prediction 
result fusion (average pooling of quality scores). The results 
show that the first pooling method works best. It can be seen 
that choosing the right pooling method has a certain effect on 
the performance improvement. 

III. PRE-TRAINING MIGRATION 

Although image segmentation does greatly improve the 
problem of insufficient datasets, a large amount of 

preprocessing makes the end-to-end superiority of CNN lost. 
So, with the development of deep learning, migration 
learning has gradually become popular. Through similar task 
migration, the network already has certain recognition ability, 
and then fine-tuning is performed by using a small datasets 
of NR-IQA. This eliminates the image patch quality score 
noise situation and the pooling error problem, at the same 
time, improves the ability of generalization. 

In NR-IQA, most of the existing migration learning 
considers it a classification task. The type of distortion or the 
degree of distortion is used as a classification target to 
fine-tuning the model. For example, according to the type of 
distortion, Gao et al. [15] used datasets with size C*840*5 
for pre-training (where C is the number of distortion types) 
to first determine the distortion type of the image. He then 
considers the effect of the distortion type on the quality score, 
and builds a loss function that contains the predicted 
distortion type results. There are many ways to migrate, or 
you can use only part of the structure of the pre-trained 
network.  

Choosing the right network is critical during the 
migration process. For example, Kim et al. [16] compared 
the results of different networks through the same 
pre-training. The AlexNet and ResNet networks were tested 
separately. The experimental results show that the results of 
the ResNet network are better. Overall, the migrated network 
performs better on the Live Challenge dataset than other 
networks. The author believes that this datasets is a real 
distortion picture, while other datasets are artificially 
synthesized distortion images, and the models pre-trained by 
real images have stronger feature extraction capabilities for 
real images. 

The results of different pre-training methods for the same 
network may also be different. Bianco et al. [14] compared 
the results of the three pre-training methods. ImageNet, 
Places and ImageNet+Places are pre-trained on Caffe-Net. 
The results show that the more the CNN recognition ability 
training, the more effective the network is for feature 
extraction, which indicates the overall content of the image. 

It can be seen that after pre-trained migration, the 
generalization ability is improved, the perception of real 
pictures is enhanced, and the tasks across data sets can be 
better accomplished. There is a big improvement in the Live 
Challenge dataset that has struggled with many network 
models. But to be more competitive, the amount of data is 
still a critical issue. It may be a good idea to combine the 
methods of image segmentation to further expand the data 
set so that the network is fully trained. 

IV. UNSUPERVISED SEQUENCE LEARNING 

Because artificial subjective scores are no longer used, 
datasets can be extended from only specific datasets to a 
wide variety of readily available datasets, or to artificially 
generate distorted image datasets without quality scores. 
This method greatly increases the data of the training image, 
thereby solving the problem of insufficient data volume. The 
dataset used by Ma et al. [17] is a 840 pristine undistorted 
image collected in the real world, which is subjected to four 
types of five levels of distortion, and constitutes 80 million 
discriminable image pairs. 

Even for unsupervised learning, it can be fine-tuned after 
network training. For example, Liu et al. [18] used the idea 
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of Siamese network [19] to train Vgg-16 with a number of 
known hierarchical order image pairs. Compared to 
traditional networks, the network of image pairs has two 
network branches that share weight, and the output of the last 
layer is a scalar. After using the image pair to train the 
Siamese network, Liu selects one of the branches and uses 
the IQA datasets to fine-tune it to form the CNN that 
ultimately implements NR-IQA. 

Moreover, sequence learning is not only used for image 
pair ranking, but also for image patch quality score 
acquisition. For example, Ye et al. [20] used a 
non-supervised hierarchical fusion method to perform a 
consistent ranking of several FR methods and obtained a 
quality score RRFscore(Ii), which in turn is adjusted by the 
selected FR method to make it a valid score. 

Since it is not limited by the existing IQA datasets, 
unsupervised sequence learning does not show much 
fluctuations when performing performance tests on different 
datasets. However, the models trained by this method are 
often not very targeted and have a poor consistency with the 
subjective quality scores, so the overall performance may not 
be as competitive as the former two. Taking full advantage 
of its stability and strengthening some consistency training 
may make the unsupervised sequence learning method more 
effective. The work of Ye et al. is a good start. 

V. EXPERIMENT 

SROCC and PLCC are two very important indicators to 
consider the performance of image quality assessment. 

The SROCC considers the rank correlation of the two 
sets of data, assuming that there are two sets of data for X 
and Y, which are the predicted scores and the ground labels 
in the image quality assessment. SROCC requires that the 
two sets of data be sorted from big to small, the lower the 
score, the higher the level. Calculate the difference between 
the predicted score and the real label of each input image, 
and find the square, shown in Equation (1). 

SROCC = 1 − 6∑ di
2n

i=1 n(n2 − 1)⁄       (1) 

SROCC focuses on the relative amount of data, so a 
monotonic nonlinear change to the set of data does not affect 
its results. PLCC considers the linear correlation coefficient 
between the two sets of data. The knowledge of the 
covariance and standard deviation product of probability 
theory is used. The formula is shown in Equation (2). 

PLCC = COV(X, Y) δX⁄ δY         (2) 

LIVE is one of the earliest image evaluation datasets. It 
contains the first five types of distortion, and there are more 
than one hundred distortion images for each type of 
distortion. A lot of research is based on this datasets. We 
have listed some of the results of training and testing on the 
LIVE dataset, as shown in Table I. 

In Table I, several typical algorithms are selected for 
comparison in three different methods. The first two 
columns is the result of train and test on LIVE datasets. The 
first row and the second row are algorithms directly given 
after image segmentation, the third row is a combination of 
FR. It can be concluded that for the quality score acquisition 
of the image patch, relying on the reliable and effective FR 

method can indeed achieve better results. And the fourth 
row and fifth row are pre-training migration algorithms. As 
can be seen from Table I, the results of the migrated 
network is closely related to the selected network. The last 
row are unsupervised sequence learning. In comparison, the 
results are similar to the former and do not have a strong 
advantage. The last two columns is the result of train and test 
on TID2008 datasets. It can be seen that the experimental 
results of either SROCC or PLCC have a significant decline 
in the datasets. 

TABLEI. TRAIN - TEST ON THE LIVE OR TID2008 DATASET 

 SROCC PLCC SROCC PLCC 

CNN[1] 0.956 0.953 0.920 0.903 

DVRM-S [7] 0.937 0.942 0.916 0.904 

BIECON[4] 0.961 0.962 0.923 - 

ALE-F[15] 0.947 0.952 - - 

DEEPBIQ[2] 0.98 0.97 0.950 0.950 

DIPIQ[3] 0.958 0.957 0.877 0.894 

Note: DIPIQ is the training and testing done in the TID2013 datasets. 

TABLEII. TRAIN ON THE LIVE DATASET - TEST ON THE TID2008 DATASET 

SROCC JP2K JPEG WN BLUR ALL4 

DVRM-S[7] 0.943 0.930 0.909 0.773 0.894 

DVRM-A[7] 0.922 0.926 0.909 0.764 0.895 

BLISS-C[12] 0.923 0.926 0.807 0.880 0.899 

BIECON[4] 0.878 0.941 0.842 0.913 0.923 

DIPIQ[3] 0.926 0.932 0.905 0.922 0.877 

PLCC JP2K JPEG WN BLUR ALL4 

DVRM-S[7] 0.945 0.942 0.919 0.801 0.911 

DVRM-A[7] 0.893 0.940 0.925 0.828 0.896 

BLISS-C[12] 0.941 0.952 0.770 0.880 0.917 

DIPIQ[3] 0.948 0.973 0.906 0.928 0.894 

Table II is the test result of several algorithms across data. 
Compared with the results trained in the TID2008 dataset, 
whether it is an algorithm such as image segmentation 
processing or a pre-training migration algorithm, the results 
are further reduced on the basis of the original. It can be seen 
that in the test of cross-datasets, the network performance 
degradation using image segmentation processing is the most 
obvious; Although the pre-trained CNN has a certain 
generalization ability, the result is only a relatively small 
decrease in performance, but the effect cannot be avoided; 
Unsupervised sequence learning, performance has not 
changed much, because it does not rely on training with 
datasets, but when training tests on the same dataset, the 
results are worse than the other two. 

It can be seen that the generalization ability of the current 
non-reference image quality assessment algorithm needs to 
be improved. Many networks that perform well on LIVE 
datasets are not very satisfactory on other datasets. Even if 
they are retrained, it is difficult to achieve the same level.  

What's more, instead of using other datasets training, it is 
directly tested on it, and the results are significantly reduced. 
With the development of the times, the type of image 
distortion is constantly increasing, and the generalization 
ability of the network not only requires the ability to cross 
datasets, but also requires able to exploit the type of 
distortion that has been trained to predict the type of 
distortion that has not been trained. Most of the current 
research focuses on the five types of distortions included in 
the LIVE dataset, without fully utilizing the content extended 
by subsequent datasets. Instead of focusing on several types 
of distortion studies, research on the degree of distortion, or 
even a mixture of distortion images of multiple distortion 
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types, will be the focus of future reference image quality 
assessment. 

VI. CONCLUSION 

Quality evaluation of images is a crucial part of the 
image transmission process. Non-reference image quality 
assessment is a typical machine learning problem in terms of 
feature extraction and recognition, and it can be found that 
CNN-based methods do improve performance through 
existing research. How to use CNN to solve existing 
problems will be a research hotspot in this field. 
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